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Abstract. We propose a set theory strong enough to interpret powerful
type theories underlying proof assistants such as LEGO and also possibly
Coq, which at the same time enables program extraction from construc-
tive proofs. For this purpose, we axiomatize impredicative constructive
version of Zermelo-Fraenkel set theory IZF with Replacement and w-
many inaccessibles, which we call IZF r.,. Our axiomatization of IZF g,
utilizes set terms, an inductive definition of inaccessible sets and mutu-
ally recursive nature of equality and membership relations. It allows us to
define a weakly-normalizing typed lambda calculus AZ,, corresponding to
proofs in IZF ., according to the Curry-Howard isomorphism principle.
We use realizability to prove the normalization theorem, which provides
basis for extracting programs from IZF g, proofs.

1 Introduction

Since the advent of proofs-as-programs paradigm, also called propositions-as-
types or Curry-Howard isomorphism, many systems with program extraction
capability have been built. Lego [1], Agda/Alfa [2, 3], Coq [4], Nuprl [5], Minlog
[6] — to name a few. Some are quite powerful — for example Coq can interpret
an intuitionistic version of Zermelo’s set theory [7]. With such power at hand,
these systems have the potential of becoming very useful tools.

There is, however, one problem they all share, namely their foundational ba-
sis. In order to use Coq or Nuprl, one has to master the ways of types, a setting
quite different from the set theory, the standard framework for doing mathemat-
ics. A newcomer to this world, presented even with IT and X types emulating
familiar universal and existential quantifiers, is likely to become confused. The
fact that the consistency of the systems is usually justified by a normalization
theorem in one form or other, does not make the matters easier. Even when
set-theoretic semantics is provided, it does not help much, given that the trans-
lation of “the stamement Vz : nat, ¢(x) is provable” is “the set IT,en[d[z := n]]
is inhabited”, instead of expected “for all x € N, ¢(z) holds”. The systems which
are not based on type theory share the problem of unfamiliar foundations. This
is a serious shortcoming preventing the systems from becoming widely used, as
the initial barrier to cross is set quite high.
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In [8] we have made the first step to provide a solution to this problem,
by presenting a framework enabling extraction of programs from proofs, while
using the standard, natural language of set theory. That framework was based
on the intuitionistic set theory IZF with Replacement, called IZF . Roughly
speaking, IZF i is what remains from Zermelo-Fraenkel set theory ZF after care-
fully removing the excluded middle, while retaining the axioms of Power Set and
unrestricted Separation. The detailed exposition can be found in Section 3. For
more information on IZF and bibliography see [9, 10]. We have defined a lambda
calculus AZ corresponding to proofs in an intensional version of IZFr and using
realizability we have shown that AZ weakly normalizes. By employing an inner
model of extensional set theory, we have used the normalization result to show
that IZF i enjoys the standard properties of constructive theories — the disjunc-
tion, numerical existence, set existence and term existence properties (DP, NEP,
SEP and TEP). These properties can be used to extract programs from proofs
[11]. All of them, apart from SEP, are essential to the extraction process. How-
ever, even though IZFy is quite powerful, it is unclear if it is as strong as type
theories underlying the systems of Coq and LEGO, Calculus of Inductive Con-
structions (CIC) and Extended Calculus of Constructions (ECC), as all known
set-theoretical interpretations use w-many strongly inaccessible cardinals [7,12].

We therefore axiomatize IZF with Replacement and w-many inaccessible sets,
which we call IZF r,,. Our axiomatization uses an inductive definition of inac-
cessible sets. IZF g, extended with excluded middle is equivalent to ZF with
w-many strong inaccessible cardinals. By utilizing the mutually recursive nature
of equality and membership relation, we avoid the need for the inner model and
define a lambda calculus AZ, corresponding directly to proofs in I1ZFg,. We
prove its normalization using realizability. As in [8], normalization can be used
to show DP, NEP, SEP and TEP. While DP and NEP have been proved for even
stronger theories in [13], our method is the first to provide the proof of TEP and
SEP for intuitionistic set theory with inaccessible sets.

Inaccessible sets perform a similar function in a constructive setting to strongly
inaccessible cardinals in the classical world and universes in type theories. They
are “large” sets/types, closed under certain operations ensuring that they give
rise to models of set/type theories. The closure conditions largely coincide in
both worlds and an inaccessible can be used to provide a set-theoretic intepreta-
tion of a universe [7,12]. Both CIC and ECC have w-many universes. By results
of Aczel [12], IZF g, is strong enough to interpret ECC. It is reasonable to expect
that CIC could be interpreted too, as the inductive types in CIC need to satisfy
the positivity conditions and inductive definitions are available in 1ZF g, due
to the presence of the Power Set and unrestricted Separation axioms. Indeed,
Werner’s set-theoretic interpretation [7] of a large fragment of CIC uses only
the existence of inductively-defined sets in the set-theoretic universe to interpret
inductively-defined types.

Our normalization result makes it possible to extract programs from proofs,
using techniques described in [11]. Thus IZF g, has all the proof-theoretic power
of LEGO and likely Coq, uses familiar set-theoretic language and enables pro-



gram extraction from proofs. This makes it an attractive basis for a powerful
and easy to use theorem prover.

This paper is organized as follows. In section 2 we present the intuitionistic
first-order logic. We axiomatize IZF with Replacement and w-many inaccessibles
in sections 3 and 4. In section 5 we define the calculus A\Z,, and prove its standard
properties. Realizability is defined in section 6 and used to prove normalization
in section 7. We describe related work in section 8.

2 Intuitionistic first-order logic

We start with a detailed presentation of the intuitionistic first-order logic (IFOL).
We use a natural deduction style of proof rules. The terms will be denoted by
letters t, s,u. The logical variables will be denoted by letters a, b, c,d, e, f. The
notation @ denotes a finite sequence, treated as a set when convenient. The i-th
element of a sequence is denoted by a;. We consider a-equivalent formulas equal.
The capture-avoiding substitution is defined as usual; the result of substituting s
for a in a term ¢ is denoted by t[a := s]. We write t[a1, ..., an = s1,..., ] to de-
note the result of substituting simultaneously s1, ..., s, for aq,.. ., a,. Contexts,
denoted by I', are sets of formulas. The free variables of a formula ¢, denoted
by FV(¢), are defined as usual. The free variables of a context I", denoted by
FV(I), are the free variables of all formulas in I". The notation ¢(a) means that
all free variables of ¢ are among a@. The proof rules are as follows:

I't¢—o I'ko I'o -1

Ik ¢ TFy TFo—d
't Tk TrHéAD  TFOAY
TFoAY T'Fo TFo
I'Fé Ty TFéVey Lokd Loko

TFove TFove TFo
I'ko¢ I'FVa. ¢ 'k L
T va g *EFVI) T'Fola=t Tro
I'béla=t] I'FJaé Lok
Ff§L¢] a;i¢f¢ agrvinu)

Negation in IFOL is an abbreviation: -¢ = ¢ — L. So is the symbol «:
¢ — = (¢ — YAy — ¢). Note that IFOL does not contain equality. The
excluded middle rule added to IFOL makes it equivalent to the classical first-
order logic without equality.

Lemma 1. For any formula ¢, dla := t][b := ula := t]] = ¢[b := u][a :=t], for
b¢ FV(t).

Proof. Straightforward structural induction on ¢.



3 IZFj,

In this section we introduce our first approximation to I1ZFg,,, called IZF ,
which is IZF i from [8] extended with the axioms postulating the existence of in-
accessible sets. We start by presenting the axioms of IZF . It is a first-order the-
ory. When extended with excluded middle, it is equivalent to ZF. The signature
consists of two binary relational symbols €, = and function symbols used in the
axioms below. The symbols 0 and S(a) are abbreviations for § and | J{a, {a,a}}.
Bounded quantifiers and the quantifier 3la (there exists exactly one a) are also
abbreviations defined in the standard way.

— (EXT) Va,b.a=b—Ve.cea—c€b

- (L¢) vaabmf' a = b/\QS((l,f) - ¢(b7f)

— (EMPTY) Ve.ce )« L

— (PAIR) Va,bVe. ¢ € {a,b} < c=aVec=0.

— (INF)Vecew—c=0VIbew. c=5(b)

— (SEPy) VfVave. c € Sg(a, f) <> c € aA¢(c, f)

— (UNION): VaVe. c€Ja«Fb€a. cebd

— (POWER) VaVe.c € P(a) < Vb.bec—beca _ _
— (REPLy) Vf,aVe.c € Ry(a, f) < (Vo € adly.d(z,y, f)) Az € a. ¢(z,c, f))
— (INDy) Vf.(Va.(vb € a.¢(b, f)) — ¢(a, f)) — Va.¢(a, f)

The axioms (SEPy), (REPLy), (IND,) and (L) are axiom schemas — there
is one axiom for each formula ¢. Note that there are terms S4 and R, for
each instance of the Separation and Replacement axioms. Formally, terms and
formulas are defined by mutual induction:

pu=tet|t=t|.. tu=al|ltt}| Set,D) | Re(t,7) ...

All the axioms apart from (EXT), (Ly) and (IND,,) assert the existence of certain
classes and have the same form: Va.Ve. ¢ € ta(a) < ¢a(c,a), where t4 is a
function symbol and ¢4 a corresponding formula for the axiom A. For example,
for (POWER), tpowrr is P and ¢powrr is Vb. b € ¢ — b € a. We reserve the
notation t4 and ¢4 to denote the term and the corresponding formula for the
axiom A.

The terms Sy (t,t) and Ry(t,¢) could be displayed as {c € ¢ | ¢(c,t)} and
{c| (Vz € tIyp(z,y,t)) A (Fz € t. d(x,c,t))}, respectively.

3.1 On the axioms of IZF

The Leibniz axiom (Ly) is usually not present among the axioms of set theories,
as it is assumed that logic contains equality and the axiom is a proof rule. We
include (L,) among the axioms of IZF g, because there is no obvious way to
add it to intuitionistic logic in the Curry-Howard isomorphism context, as its
computational content is unclear.

A more familiar formulation of Replacement could be: “If for all « € a there
is exactly one y such that é(z,y, f) holds, then there is a set D such that
Vx € a3y € D. ¢(z,y, f) and for all d € D there is = € a such that ¢(x,d, f)".
Let this formulation of Replacement be called (REPLO0).



Lemma 2. (REPL,) is equivalent to (REPL0) on the basis of the rest of IZFg
azrioms.

Proof. Assume (REPL,) and suppose that for all = € A there is exactly one y
such that ¢(z,y, f). Let D = R4(A, f). Take any = € A, then there is y such
that ¢(z,vy, f), so y € Rg(A, f). Moreover, if d € R4(A, f) then there is x € A
such that ¢(z,d, f). This shows (REPLO,).

The other direction is a bit more tricky. Assume (REPLO,). We need to show
the existence of {z | Vo € A3ly. é(z,y, f) A Iz € A. ¢(x,y, f)}. First consider
the set B = {2z € A | Vo € AJly. ¢(x,y, f)}. Then for all z € B there is exactly
one y such that ¢(z,y, f). Use (REPLO,) to get the set D. Then D is the set
we are looking for. Indeed, if d € D, then there is z € B such that ¢(z,d, f) and
so by the definition of B, Vx € A3ly. ¢(z,y, f) and z € A. On the other hand,
take any d and suppose that Vo € A3ly. ¢(x,y, f) and there is = € A such that
é(x,d, f). Then 2 € B, so there is 4 € D such that ¢(z,v’, f). But v’ must be
equal to d, so d € D.

3.2 Inaccessible sets

To extend IZFr with inaccessible sets, we add a family of axioms (INAC;) for
i > 0. We call the resulting theory IZF . The axiom (INAC;) asserts the
existence of the i-th inaccessible set, denoted by a new constant symbol V;, and
is defined as follows:

(INAC;) Ve. c € Vi « ¢l (c, Vi) AVd. ¢p4(d) — c€d

Following the conventions set up for 1ZF g, ¢1nyac, () is ¢i(c, Vi) AVd. ¢4(d) —
¢ € d. The formula ¢! (c,d) intuitively sets up conditions for ¢ being a member
of V;, while ¢4(d) says what it means for d to be inaccessible. To streamline the
definition, we set V{ to abbreviate w.

Definition 1. The formula ¢i(c,V;) for i > 0 is a disjunction of the following
five clauses:

Cc = ‘/i—l-

there is a € V; such that ¢ € a.

there is a € V; such that c is a union of a.

there is a € V; such that c is a power set of a.

there is a € V; such that c is a function from a to V;.

GrIs o o~

Definition 2. The formula ¢5(d) for i > 0 is a conjunction of the following five
clauses:

1. V,_q €d.

2. Ve, feedNfece— fed.
3. Veed Jeed.

4. Ye €d. P(e) €d.



5 Yeed. Vfece—d. fed, where e — d denotes the set of all functions from
e to d.

Briefly, the i-th inaccessible set is the smallest transitive set containing V;_1
and closed under unions, power sets and taking functions from its elements into
itself. It is easy to see that IZF ; ,+ EM is equivalent to ZF with w-many strongly
inaccessible cardinals. For a theory 7', let M (T') denote a sentence “T" has a
model”. To show that the set V; defined by (INAC;) behaves as an inaccessible
set in IZF , we prove:

Theorem 1 (IZF ). For all i > 0,
Vi e IZFR + M(IZFR) + M(IZFp + M(IZFR)) + .. .(i times).

Proof. By Clause 2 in the Definition 1, V; is transitive, so the equality and mem-
bership relations are absolute. Clause 1 gives us w € V; and since its definition is
Ap, V1 E(INF). Clauses 3 and 4 provide the (UNION) and (POWER) axioms.
Transitivity then gives (SEP) and (PAIR), while Clause 5, thanks to Lemma, 2,
gives (REPLgy). The existence of the empty set follows by (INF) and (SEP). For
the Induction axiom, we need to show:

VeV (VaeV,.(YoeVibea— ¢vi(b,f) — ¢Vi(a, f)) — Va € V;. ¢V (a, f).
Take any F € V;. It suffices to show that:
(VaeV;. (WbeVi.bea— ¢V (b, F)) — ¢"i(a,F)) = VaeV;. ¢"(a,F).
This is equivalent to:
(Va. (Vb€ a.beV; — ¢Vi(b,F)) maeV; — ¢Vi(a,F)) = VacV;. ¢V (a, F).

But this is the instance of the induction axiom for the formulaa € V; — ¢"i(a, f).

Thus Vi |FIZFg. Since Vi € Vs, Vo |= IZFp+ M(IZFR). Since Vo € V3,
Vs EIZF g+ M(IZF p+ M(IZFR)). Proceeding in this manner by induction we
get the claim.

4 1IZFpg,

We now present our final axiomatization of IZF with Replacement and inac-
cessible sets, which we call IZFg,,. The advantage of this axiomatization over
the previous one is that equality and membership are defined in terms of each
other, instead of being taken for granted and axiomatized with Extensionality
and Leibniz axioms. This trick, which amounts to interpreting an extensional
set theory in an intensional one, has already been used by Friedman in [14].
As we shall see later, this makes it possible to prove a normalization theorem
directly for the theory, thus avoiding the need for the detour via the class of
transitively-L-stable sets used in [8].

The signature of IZF ., consists of three relational symbols: €;,€,= and
terms of IZF, . The axioms of IZF r,, are as follows:



— (IN)Va,b.a€b— Je.cerbha=c

— (EQ)Va,b.a=b—Vd. (deja—deb)A(derb—de a)

— (INDy) Vf.(Va.(Vb €1 a.¢(b, f)) — é(a, f)) — Ya.¢(a, f)

— (A) Va. Ve. c € ta(a) « ¢palc,a), for (A) being one of (EMPTY), (PAIR),
(INF), (SEP,), (UNION), (POWER), (REPL,), (INAC;). For example, the
Power Set axiom has a form: VaVec. ¢ €1 P(a) < Vb. b€ c— b€ a.

The extra relational symbol €; intuitively denotes the intensional member-
ship relation. Note that neither the Leibniz axiom (Ly) nor the extensionality
axiom are present. We will show, however, that they can be derived and that
this axiomatization is as good as IZF . From now on in this section, we work
in IZF g,,. The following sequence of lemmas establishes that equality and mem-
bership behave in the correct way. Statements similar in spirit are also proved
in the context of Boolean-valued models. Our treatment slightly simplifies the
standard presentation by avoiding the need for mutual induction.

Lemma 3. For all a, a = a.

Proof. By e-induction on a. Take any b €7 a. By the inductive hypothesis, b = b,
so also b € a.

Corollary 1. Ifa €7 b, then a € b.

Lemma 4. For all a,b, if a = b, then b = a.

Proof. Straighforward.

Lemma 5. For all b,a,c, if a =b and b = ¢, then a = c.

Proof. By €-induction on b. First take any d €; a. By a = b, d € b, so there is
e €r bsuch that d =e. By b = ¢, e € ¢, so there is f €; ¢ such that e = f. By
the inductive hypothesis for e, d = f, so d € c.

The other direction is symmetric and proceeds from ¢ to a. Take any d €; c.
By b=c¢, d € b, so there is e €; b such that d = e. By a = b, e € a, so there is
f €1 a such that e = f. The inductive hypothesis gives the claim.

Lemma 6. For all a,b,c, if a € c and a = b, then b € c.

Proof. Since a € ¢, there is d € ¢ such that a = d. By previous lemmas we also
have b =d, so b € c.

Lemma 7. For all a,b,d, if a =b and d € a, then d € b.

Proof. Suppose d € a, then there is e such that e €; ¢ and d = e. By a = b,
e € b. By Lemma 6, d € b.

Lemma 8 (Extensionality). If for all d, d € a iff d € b, then a = b.

Proof. Take any d €1 a. By Corollary 1 d € a, so by Lemma 7 also d € b. The
other direction is symmetric.



We would like to mention that all the lemmas above have been verified by
the computer.

Lemma 9 (The Leibniz axiom). For any term t(a, f) and formula ¢(a, f)
not containing €1, if a = b, then t(a, f) =t(b, ) and ¢(a, f) < &, f).

Proof. Straightforward mutual induction on generation of ¢ and ¢. We show
some representative cases. Case ¢ or ¢ of:

— Uti(a). If ¢ €7 Uti(a), then for some d, ¢ € d € ti(a). By the inductive
hypothesis ti1(a) = t1(b), so by Lemma 7 d € t1(b), so ¢ € |Jt1(b) and by
Corollary 1 also ¢ € |Jt1(b). The other direction is symmetric and by the
(EQ) axiom we get t(a) = t(b). L

~ Sy(ti(a),u(@)). T ¢ €1 Sy(ti(a),ula)), then ¢ € ti(a) and d(c,u(@)). B
the inductive hypothesis, ¢1(a) = t1(b), (a) (b) and thus ¢(c, u(b)) and
c € t1(b), s0 ¢ €1 Sy(t1(b),u(b)) and also ¢ € Sy (t1(b), u(b)).

— t(a) € s(a). By the inductive hypothesis, t(a) = t(b) and s(a) = s(b). Thus
by Lemma 7 t(a) € s(b) and by Lemma 6 ¢(b) € s(b).

— Ve. ¢(c,a, f). Take any ¢, we have ¢(c,a, f), so by inductive hypothesis
8(c,b, 1), 50 Ve. (e, b, f).

Lemma 10. For any term t4(a), c € ta(a) iff pa(c,a).

Proof. The right-to-left direction follows immediately by Corollary 1. For the
left-to-right direction, suppose ¢ € t4(a). Then there is d such that d € t4(a)
and ¢ = d. Therefore ¢4(d,a) holds and by the Leibniz axiom we also get
da (C, E). 9

Lemma 11. For any aziom A of IZFy, ,, IZFg, ;- A.

Proof. Lemmas 8, 9 and 10 show the claim for all the axioms apart from (INDy).
So suppose Va. (Vb € a. ¢(b, f)) — ¢(a, f). We need to show Va. ¢(a, f). We
proceed by € -induction on a. It suffices to show Ve. (Vd €5 c. ¢(d, f)) — o(c, f).
Take any ¢ and suppose Vd €1 c. ¢(d, f). We need to show ¢(c, f). Take a to be
c in the assumption, so it suffices to show that Vb € c. ¢(b, f). Take any b € c.
Then there is e €; ¢ such that e = b. By the inductive hypothesis ¢(e, f) holds
and hence by the Leibniz axiom we get ¢(b, f), which shows the claim.

Corollary 2. If IZF, \- ¢, then IZFg - ¢.
Lemma 12. If IZFp,+ ¢ and ¢ doesn’t contain €y, then IZFy - ¢.

Proof. Working in IZF , simply interpret €; as € to see that all axioms of
IZF g, are valid and that if IZF g, ¢, then IZF , F ¢[e:=€].

Therefore IZF i, is a legitimate axiomatization of IZF with Replacement and
inaccessible sets. From now on the names of the axioms refer to the axiomatiza-
tion of IZF g,,.



5 The AZ, calculus

We now introduce a lambda calculus AZ,, for IZF g, based on the Curry-Howard
isomorphism principle. The part of \Z,, corresponding to the first-order logic is
essentially AP; from [15]. The rest of the calculus, apart from clauses correspond-
ing to (IN), (EQ) and (INAC;) axioms, is identical to \Z from [§].

5.1 The terms of \Z,

The lambda terms in AZ, will be denoted by letters M, N,O, P. There are
two kinds of lambda abstraction in AZ,, one corresponding to the proofs of
implication, the other to the proofs of universal quantification. We use separate
sets of variables for these abstractions and call them propositional and first-order
variables, respectively. Letters z, y, z will be used for the propositional variables
and letters a, b, ¢ for the first-order variables. Letters ¢, s, u are reserved for IZF g,,
terms. The types in the system are IZF ,, formulas. The terms are generated by
the following abstract grammar:

M=z |MN|X. M| Xx:¢. M |inl(M) | inr(M) | fst(M) | snd(M)
[t,M] | M t|(M,N) |case(M,z:¢. N,z :1. O) | magic(M)
let [a,x : ¢] :== M in N | ind, 5,(M, t) | inac;Prop(¢, M) | inac;Rep(t, M)
inProp(t,u, M) | inRep(t, u, M) | eqProp(t, u, M) | eqRep(t,u, M)
pairProp(t, u1, ug, M) | pairRep(¢, w1, uz, M)
unionProp(t, u, M) | unionRep(t, u, M)
sequ(aj)Prop(t, u,u, M) | sep¢(a3)Rep(t, u,u, M)
powerProp(t,u, M) | powerRep(t, u, M)
infProp(t, M) | infRep(¢, M)
1"epl¢(albj)Prop(t7 u,u, M) | rep1¢(a7b)?) Rep(t, u,u, M)

The ind terms correspond to the (IND) axiom, Prop and Rep terms corre-
spond to the respective axioms of IZF, and the rest of the terms corresponds
to the rules of IFOL. The exact nature of the correspondence will become clear
in Section 5.3. To avoid listing all of them repeatedly, we adopt a convention of
using axRep and axProp terms to tacitly mean all Rep and Prop terms, for ax
being one of in, eq, pair, union, sep, power, inf, repl and inac;, unless we list
some of them separately. With this convention in mind, we can summarize the
definition of the Prop and Rep terms as:

axProp(t,u, M) | axRep(t,u, M),

where the number of terms in the sequence w depends on the particular axiom.



10

The free variables of a lambda term are defined as usual, taking into account
that variables in ), case and let terms bind respective terms. The relation of
a-equivalence is defined taking this information into account. We consider a-
equivalent terms equal. We denote all free variables of a term M by FV (M)
and the free first-order variables of a term by FVg(M). The free (first-order)
variables of a context I' are denoted by FV(I') (FVp(I')) and defined in a
natural way.

5.2 The reduction relation

The deterministic reduction relation — arises from the following reduction rules
and evaluation contexts:

Az :¢. M)N — M|z := N]| (Aa. M)t — Mla :={]
fst((M,N)) — M snd((M,N)) — N
case(inl(M),z : ¢. N,z : 1p. O) — Nz := M]
case(inr(M),z : 6. N,z : 1. O) — Olz := M]
let [a,2 : ¢ := [t, M] in N — Nla := t][x := M]

axProp(t, u, axRep(t,w, M)) — M
indy(M,T) — Ae. M ¢ (Ab.Az : b € c. indy(M,7) b)

In the reduction rules for ind terms, the variable x is new.
The evaluation contexts describe call-by-need (lazy) evaluation order:

o] = fist([o]) | snd([e]) | case([o], z.N, 2.0)

axProp(t, @, [o]) | let [a,x : ¢] :=[o] in N | [o] M | magic([o])

We distinguish certain A\Z,, terms as values. The values are generated by the
following abstract grammar, where M is an arbitrary term. Obviously, there are
no possible reductions from values.

Vi=Xa. M| Ax:¢p. M | inr(M) | inl(M) | [t, M] | (M, N) | axRep(t,u, M)

Definition 3. We write M | if the reduction sequence starting from M termi-
nates. In this situation we also say that M normalizes. We write M | v if we
want to state that v is the term at which this reduction sequence terminates. We
write M —* M’ if M reduces to M’ in some number of steps.
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5.3 The types of \Z,,

The type system for A7, is constructed according to the principle of the Curry-
Howard isomorphism for IZFg,,. Types are IZF i, formulas, and terms are \Z,,
terms. Contexts I are finite sets of pairs (x;, ¢;). The first set of rules corresponds
to first-order logic.

I'M:¢p—¢ T'FN:¢ La:¢ptM:y
Tz prz:0 TFMN:¢ TF e . M:¢p—

I'tM:¢ THFN:i¢p THFM:¢AY  THM:dpAp
I'F(M,N):¢A0 IHfst(M):¢  I'Fsnd(M): v

I'-M:¢ I'-M:
I'inl(M): ¢V I'Finrf(M): 9oV

I'-M:¢ovy Lx:¢oFN:9 Nr:yYyEFO:9
I'tcase(M,z:¢. N,z :¢. O) : 9

I'tEM:¢ I'M:Va. ¢ I'M: ¢la:=1]
Fl—)\a.M:Va.d)agéFVF(F) I'-Mt: ¢la:=t] 't [t,M]:3a. ¢
'EM: 1 I'-M:3a.¢ Lx:¢pFN:v

I' - magic(M) : ¢ I'kFlet [a,x:¢]:=Min N : a ¢ FVp(L,9)

The rest of the rules correspond to IZF g, axioms:

I''tM:Vd. (dejt—decu)AN(deju—det)
I'+eqRep(t,u, M) :t =u

I'HFt=u
I' - eqProp(t,u, M) :Vd. (dert>deu)AN(d€ju—det)

I'EM:3c.cejunt=c I'Fteu
I'+inRep(t,u, M) :t€u I' - inProp(t,u, M) : Jc. c€juNt =c

I'tM: ¢a(t,m) I'-M:terta(n)
It axRep(t,u, M) : t €7 ta(nw) I' - axProp(t,u, M) : pa(t,u)

TFM:Ve. (W.berc— ¢(b7) — (.7
I'tindy, 5 (M,?) : Va. ¢(a,t)

Note that the typing system is syntax-oriented — the form of the lambda
term in the conclusion of the rule determines the rule uniquely.
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5.4 The properties of AZ,,
We now proceed with a standard sequence of lemmas for \Z,,,.

Lemma 13 (Canonical Forms). Suppose M is a value and = M : 9. Then:

—d=terta(n) iff M = axRep(t,u,N) and - N : ¢pa(t,a).

— 9=V iff (M =inl(N) and+ N :¢) or (M =inr(N) and = N : ).
—d=0oANY iff M =(N,0), - N:¢ andt O : .
—V=¢p—=viff M=Xx:¢. N andx:¢pF N : .

— 9 =Va. ¢ iff M = Xa. N and - N : ¢.

—v=3a. ¢ iff M =[t,N] and - N : ¢[a :=t].

— ¥ = L never happens.

Proof. Immediate from the typing rules and the definition of values.

Lemma 14 (Weakening). If I' = M : ¢ and FV () U {x} are fresh to the
proof tree I' = M : ¢, then I,z : yp = M : ¢.

Proof. Straightforward induction on I' - M : ¢.

There are two substitution lemmas, one for the propositional part, the other
for the first-order part of the calculus. Since the rules and terms of A\Z, cor-
responding to IZF g, axioms do not interact with substitutions in a significant
way, the proofs are routine.

Lemma 15. If Iz : ¢+ M : ¢ and '+ N : ¢, then I' = M|z := N] : 9.
Proof. By induction on I',x : ¢ = M : 1. We show two interesting cases.

— i =11 — Yo, M = Ay : ¢1. O. Using a-conversion we can choose y to be
new, so that y ¢ FV(I',x) U FV(N). The proof tree must end with:

e g,y FO: s
Lx:obXy:r. O:hy — o

By the inductive hypothesis, Iy : 1 F Oz := N] : 9, so I' F Ay :
1. Oz := NJ| : 91 — 3. By the choice of y, I' F (A\y : ¥1. O)[z := N]J :
1 — o

— =12, M =let [a,y : ¢1] := My in Ms. The proof tree ends with:

Lx:¢pbFMy:3a. vy Iz:¢,y:1v1 - My
Lz:oklet [a,y: 1] := My in My : 9

Choose a and y to be fresh. By the inductive hypothesis, I - Mz =
N]:3a. 1 and Iy : 1 F Ma[x := N] : ¥o. Thus I' F let [a,y : 1] =
Mz := N] in Mz := N] : ¢2. By a and y fresh, I' F (let [a,y : ¢1] :=
M in My)[z := N] : ¢ which is what we want.

Lemma 16. If ' M : ¢, then I'la :=t| F M[a :=t] : ¢[a :=1t].
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Proof. By induction on I' = M : ¢. Most of the rules do not interact with first-
order substitution, so we will show the proof just for the two of them which
do.

— ¢ =Vb. ¢1, M = \b. M. The proof tree ends with:

F|—M12¢1
I'=Xb. My : V0. ¢

b¢ FVp(I')

Without loss of generality we can assume that b ¢ FV(¢) U {a}. By the
inductive hypothesis, I'[a := ¢] - Mi[a := t] : ¢1[a := t]. Therefore I'[a :=
t] = Ab. Mifa := t] : ¥b. ¢1[a = t] and by the choice of b, I'[a := ] F
(Ab. My)[a == t] F (Vb. é1)[a := 1.

— ¢ = P1[b:=u], M = M; u for some term u. The proof tree ends with:

'+ M, : Vb, ¢
' My u: ¢r[b:=ul

Choosing b to be fresh, by the inductive hypothesis we get I'[a := t]
Mila :=t] : Vb. (¢1]a :=t]), so ['[a := t] k= Mi[a := t] ula := 1] : ¢1]a :
t][b:= ula :=t]]. By Lemma 1l and b ¢ FV(¢), we get I'[a :=t| b (M; u)[a :=
t] : b := ul[a :=t].

With the lemmas at hand, Progress and Preservation follow easily:

Lemma 17 (Subject Reduction, Preservation). If '+ M : ¢ and M — N,
then I'= N : ¢.

Proof. By induction on the definition of M — N. We show several cases. Case
M — N of:

— (Az: ¢1. My) My — My[x := My]. The proof tree I' - M : ¢ must end with:

F,CE:(]Sl'—Mli(b
F"/\CEZ(]51.M11(]51—>(]5 F"Mg:¢1
Fl—()\xqblMl)Mgd)

By Lemma 15, I' = M [z := M) : ¢1.
—let [a,x : ¢1] = [t, M1] in M2 — Msla := t][x := M;]. The proof tree
I' - M : ¢ must end with:

FI—M1:¢1[a::t]
'F[t,Mi):3a.¢1 Lax:¢1tMy:¢
I'tlet [a, @ : ¢1] :=[t, M1] in Ms : ¢

Choose a to be fresh. Thus M;[a :=t| = M7 and I'[a := t] = I". By the side-
condition of the last typing rule, a ¢ FV(¢), so ¢[a := t] = ¢. By Lemma 16
we get Ia :=t],z: ¢1la :=t] F Mala:=1t] : ¢la :=t], so also I,z : ¢1]a :=
t| F Mala :=t] : ¢. By Lemma 15, we get I' = Msla := t][x := Mi] : ¢.
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— axProp(t, w, axRep(t,u, M1)) — M. The proof tree must end with:

— indy, 7

'+ M1 : ¢A(t,ﬂ)
I't axRep(t,w, My)) : t €5 ta(uw)
I' - axProp(t, u, axRep(t, @, M1)) : ¢pa(t, )

The claim follows immediately.
(My,t) — Ace. My ¢ (AbAz 2 b € c. indy, 5 (M, 1) b). The proof
tree must end with:
' My :Ve. (Vb berc— (b, 1)) — ¥(c,t)
I'tind (My,%) : Va. ¥(a,¥)

¥(a,f)
We choose b, ¢, z to be fresh. By applying a-conversion we can also obtain a
proof tree of I' = M : Ve. (Vd. d €1 e — ¥(d,t)) — (e, ), where {d,e} N
{b,c} = ). Then by Weakening we get I,z :b €; ck My : Ve. (Vd. d €; e —
¥(d, 1)) = 1(e,t), soalso Iz : b € ckind,,, 3 (M1, ) : Va. Y(a, t). Let the
proof tree T' be defined as:
Irz:berck indw(aj)(Ml,f) : Va. (a,t)
Fx:berckind,,5 (M) b:i(b,?)
I' Az :bepcindy,5)/(Mi,1) b:berc— (b, )
I'EXbXx:bege indd}(a@(Ml,f) b:Vb.berc— (b1

Then the following proof tree shows the claim:

I' M :Ve. (Vb.berc— (b)) — (e,
TF M c: (Vb bere—obi) — (et
I'tM;c(MbAz:bere indw(a,g)(Ml,f
I'tXe. My e (Mb Az :bege indd}(a@(Ml,f

Lemma 18 (Progress). If = M : ¢, then either M is a value or there is N
such that M — N.

Proof. Straightforward induction on - M : ¢. We show the cases for the rules
corresponding to IZFg,, axioms.

t
— If M = axProp(t,

If M = axRep( M), then M is a value.

u,
u, 0), then we have the following proof tree:

FO:teg tA(ﬂ)
F axProp(t,@, O) : ¢a(t,u)

By the inductive hypothesis, either O is a value or there is O; such that O —
O1. In the former case, by Canonical Forms, O = axRep(t,u, P) and M — P.
In the latter, by the evaluation rules axProp(¢,@,O) — axProp(t,u, O1).
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— The cases corresponding to the equality and membership axioms work in the
same way.
— The ind terms always reduce.

Corollary 3. If W M : ¢ and M | v, thenF v : ¢ and v is a value.
Corollary 4. If- M : L, then M does not normalize.

Proof. If M normalized, then by Corollary 3 we would have a value of type L,
which by Canonical Forms is impossible.

Finally, we state the formal correspondence between A7, and IZF g, :

Lemma 19 (Curry-Howard isomorphism). IfI" - O : ¢ then IZFg,+rg(I")
¢, where rg(I") = {¢ | (z,¢) € I'}. If IZFry+1I" = ¢, then there exists a term
M such that I’ = M : ¢, where I = {(z4,9) | ¢ € I'}.

Proof. Both parts follow by easy induction on the proof. The first part is straight-
forward, to get the claim simply erase the lambda terms from the proof tree. For
the second part, we show terms and trees corresponding to IZF ., axioms:

— Let ¢ be one of the IZFg, axioms apart from €-Induction. Then ¢ =
Va. Ve. ¢ €1 ta(@) < ¢a(c,a) for the axiom (A) (incorporating axioms
(IN) and (EQ) in this case in the obvious way). Recall that ¢; < ¢ is an
abbreviation for (¢1 — ¢2) A (92 — ¢1). Let T be the following proof tree:

Ix:¢alc,a)bx:pale,a)
I'ix: ¢pa(c,a) FaxRep(e,a,x) : c €5 ta(a)
't Xx:¢a(c,a). axRep(c,a,xz) : pa(c,a) — c €1 ta(a)

Let also N = (Ax : ¢ €1 ta(a). axProp(c, @, z), \x : ¢a(c,a). axRep(c,a, x)).
Then the following proof tree shows the claim:

Nz:certa(@)Fx:certala)
I'x:ce€rta(a) - axProp(c,a@, x) : pa(c,a)
't Xx:c€pta(a). axProp(e,a,x) :c€rta(a) — ¢alc,a) T
I'EN:ceg tA(E) — qu(C,E)
I't=Xahe. N :Va. Ve. c€rta(a) < ¢alc,a)

— Let ¢ be the e-induction axiom. Let M = Afiz : (Va.(vb. b €/ a —
Y, f)) — Y(a, f)). ind(z, f) and let ¥ = Va.(Vb. b €1 a — ¢(b, f)) —
Y(a, f). The following proof tree shows the claim:

Lx:9Fx:0
Iz 9+ indy, 7 (2, f) :Va. ¥(a, f)

T+ M:Vf.(Va.(Vb. b€ a— (b, ) — ¥(a, f)) — Ya. ¢(a, f)
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Note that all proofs in this section are constructive and quite weak from
the proof-theoretic point of view — Heyting Arithmetic should be sufficient
to formalize the arguments. However, by the Curry-Howard isomorphism and
Corollary 4, normalization of AZ,, entails consistency of IZF g,,, which easily in-
terprets Heyting Arithmetic. Therefore a normalization proof must utilize much
stronger means, which we introduce in the following section.

6 Realizability for IZF g,

In this section we work in ZF with w-many strongly inaccessible cardinals. We
denote the i-th strongly inaccessible by I'; and choose them so that [ € I';;.
It is likely that IZF with Collection and w-many inaccessible sets would be
sufficient, as excluded middle is not used explicitly; however, arguments using
ordinals and ranks would need to be done very carefully, as the notion of an
ordinal in constructive set theories is problematic [16,17].

6.1 Realizers

Our realizers are essentially terms of A\Z,. For convenience, wherever possible,
we erase logic terms and formulas from parameters of axRep, axProp, ind and
case terms. We call the resulting calculus A\Z,,. More formally, \Z,, arises as a
range of an erasure map M, which takes as its argument a \Z,-term. This map
is defined by structural induction on M and induced by the following cases:

axRep(t,u, M) = axRep(M)  axProp(t,u, M) = axProp(M)

Mo i M=Xx. M let[a,z:¢]:=M in N =letla,z] .= M in N

indg(M,?) =ind(M)  case(M,z: ¢. N,z : 1. O) = case(M,z.N,z.0)

The erasure on the rest of terms is defined in a natural way, for example (M,N >_:
(M,N), [t,M] =[t,M] and M t = M t. The reduction rules and values in A\Z,
are ir&uced from AZ, in an obvious way. The set of AZ,, values will be denoted
by A\Z,,-

Lemma 20. If M normalizes, so does M.
Proof. Straightforward — the erased information does not affect the reductions.

The fact that logic terms do not play any role in the reductions is crucial for
the normalization argument to work.

This definition of the erasure map and \Z, fixes a small mistake in the
presentation in [8], where a bit too much information was erased.
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6.2 Realizability relation

Having defined realizers, we proceed to define the realizability relation. Our
definition was inspired by McCarty’s [18]. From now on, the letter 7" denotes the
set of all IZFg,, terms.

Definition 4. A set A is a A\-name iff A is a set of pairs (v,B) such that
v € X\Z,, and B is a A-name.

In other words, A\-names are sets hereditarily labelled by AZ,, values.
Definition 5. The class of A\-names is denoted by V.

Formally, V* is generated by the following transfinite inductive definition on
ordinals:
va=U POZ.,xvy) v= | W
B<La «cORD

Definition 6. The A-rank of a A\-name A, denoted by Ark(A), is the smallest
« such that A € V).

We now define three auxiliary relations between \Z,, terms and pairs of sets
in V*, which we write as M |- A €; B, M IF A € B, M |- A = B. These
relations are a prelude to the definition of realizability.

MIFAerB=M | vA(v,A) €B

MIFAeB =M | inRep(N)AN | [u,0] A3C € V*. O | (O1,02)A
01”—0613/\02”—14:0

MIFA=B =M | eqRep(Mo) A My | Aa. MyA
Vt € T,VD € V*. Mila:=t] | (O, P)A
O | Ax. O1 AYN. (N IF D €7 A) — Oy[z := N]IF D € BA
Pl Xz. PLAYN. (NIFDe; B) — Pz :=N]IFDe A

The relations M I A € Band M I+ A = B are defined together in a standard
way by transfinite recursion. See for example [19] for more details.

Definition 7. For any set C € V*, Ct denotes {(M,A) | M I+ A € C}.

Definition 8. A (class-sized) first-order language L arises from enriching the
IZFR,, signature with constants for all \-names.

From now on until the end of this section, symbols M, N, O, P range exclu-
sively over AZ,-terms, letters a,b,c vary over first-order variables in the lan-
guage, letters A, B, C' vary over A-names and letter p varies over finite partial
functions from first-order variables in L to V. We call such functions enwiron-
ments.
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Definition 9. For any formula ¢ of L, any term t of L and p defined on all
free variables of ¢ and t, we define by metalevel induction a realizability relation
M Ik, ¢ in an environment p and a meaning of a term [t], in an environment

p:

1. [al, = pla)
2. [Al, =4
3. [w], =w', where W' is defined by the means of inductive definition: w' is the
smallest set such that:
— (infRep(N), A) € W' if N | inl(0), OlF, A=0 and A € V).
— If (M,B) € w'", then (infRep(N), A) € w’' if N | inr(Ny), Ny | [t,0],
O | (M,P), Pl-, A=S(B) and A € V.
Note that if (M, B) € w'", then there is a finite ordinal o such that B € V).
4. Vil, = Ui. We will define U; below.
5. [ta(@)], = {(axRep(N), B) € AZy, x V} | N Ik, ¢a(B, [ul,)}. The ordinal
~v will be defined below.
6. MIF, L=1
7. M ”—p ters=MIF [[t]]p €r [[S]]p
8. Mk, tes=MI-[t], €[s],
9. MiFyt=s=MI[t], = [s],

10. Mk, ¢ Ny =M | (My, Ma) A (My I, ¢) A (My Ik, )

11. Mk, ¢V o = (M | inl(My) A My b, ¢) V(M | inr(My) A M I, )
12. Mk, ¢ — = (M | Ax. My) AVN. (N IF, ¢) — (Mi[z := N] Ik, )
18. Mk, 3a. ¢ =M | [t, NJANJA € V. Nk, ¢la := A]

14. M-,Ya. ¢ =M | A\a. NAVA€ VAVt eT. Nla:=t] I, ¢pla = A

To define Uj;, first recall that the axiom (INAC;) has the following form:
(INAC;) Ve. ¢ € Vi < ¢ (c, V;) AVd. ¢y(d) — c € d.
We define a monotonic operator F' on sets as:
F(A) = AU{(inac;Rep(N),C) € \Zy,,x VP | N Ik, ¢4 (C, A)AVd. ¢(d) — C € d}.

We set U; to be the smallest fixpoint of F'. Formally, U; is generated by transfinite
inductive definition on ordinals:

Unr=F(|JUp) U= |J Up,
B<y veORD

Since F adds only elements from A\Z,, x V}, any element of U; is in AZ,,, X V2,
so U; € Vf\iﬂ-

The definition of the ordinal ~ in item 5 depends on t4(@). This ordinal is
close to the rank of the set denoted by t4(u) and is chosen so that Lemma 42
can be proved. Let @ = Ark([u],). Case t4(u) of:

— {ur,uz} — v = maz(ay, az)
- Plu)y —y=a+1
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-Jy—rvy=qa

= oo (W) — 7 = a1

— Ry, 57 (u, ). This case is more complicated. The names are chosen to
match the corresponding clause in the proof of Lemma 42. Let

G = {(Nl, (Ngl,B)) S AZ X [[u]];' | dd € V)\. ¢(N1,N21,B,d)},

where w(Nl,Ngl,B,d) = (Nl | Aa. Nll) A\ (Nll 1 Az O) AN (O[$ = Ngl] ”_p
o(B,d, [u],) AVe. ¢(B,e,[u],) — e = d). Then for all g € G there is D
and (Nl, (Ngl,B)) such that g = (Nl, (Ngl, B)) and ’lb(Nl,Ngl, B,D) Use
Collection to collect these D’s in one set H, so that for all g € G there is
D € H such that the property holds. Apply Replacement to H to get the
set of A-ranks of sets in H. Then 3 = |J H is an ordinal and for any D € H,
Ark(D) < (3. Therefore for all g € G there is D € V' and (N1, (Na1, B))
such that g = (N1, (Na1, B)) and ¢ (N1, Na1, B, D) holds. Set v = 6 + 1.

At this point it is not clear yet that the realizability definition makes sense
— a priori it might be circular. We will now show that it is not the case.

Definition 10. For any closed term s, we define number of occurences of s
in any term t and formula ¢, denoted by Occ(s,t) and Occ(s, ), respectively,
by induction on the definition of terms and formulas. We show representative
clauses of the definition:

— Occ(s,s) = 1.
- Occ(s, a) = 0, where a is a variable.
- c(s,tA(E)) Occ(s, ).
Occ(s, Sg(t,w)) = Occ(s, ¢) + Occe(s, t) + Oce(s,T).
— Occ(s,t € u) = Oce(s, t) + Occ(s, u).
— Occ(s, ¢ Np) = Oce(s, @) + Occe(s, ).

- ccC

In a similar manner we define the number of function symbols F'S in a term and
formula.

Definition 11. Let M (N) denote the set of all multisets over N with the stan-
dard well-founded ordering. Formally, a member A of M (N) is a function from
N to N, returning for any n the number of copies of n in A. We define a func-
tion V taking terms and formulas into M(N): V(z) for any number i returns
Occ(V;, ), for x being either a term or a formula.

Lemma 21. The definition of realizability is well-founded.

Proof. Use the measure function m which takes a clause in the definition and
returns an element of M (N) x N® with the lexicographical order:

- m(M Ik, ¢) = (V(¢), Occ(w, ), FS(¢), “structural complexity of ¢”)
- m([t],) = (V(t), Oce(w,t), FS(t), 0)
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Then the measure of the definiendum is always greater than the measure of the
definiens — in the clauses for formulas the structural complexity goes down,
while the rest of parameters do not grow larger. In the definition of [V;],, one V;
disappears replaced by two V;_;’s. In the definition of [w],, one w disappears.
Finally, in the definition of [t4(@)],, the topmost ¢4 disappears, while no new
Vi’s and w’s appear.

Since the definition is well-founded, (metalevel) inductive proofs on the def-
inition of realizability are justified, such as the proof of the following lemma:

Lemma 22. [t[a := s]], = [tla := [s],]], = [t]pja:=[s],) and M 1=, ¢la := s] iff
M H—p ¢[a = [[S]]p] ZﬁM ”_p[a::[[sﬂp] (b

Proof. By induction on the definition of realizability. We show representative
cases. Case t of:

— A — then [t[a := s]], = [tla := [s],]], = [t]pa:=(s1,] = A-

— a — then [tla = s]], = [s],, [tla = [s],]], = [lsl,], = [s], and also
[t ptai=gs1,1 = [5]p-

— ta(@). Then [tla := s]], = {(axRep(N),A) | N Ik, ¢a(A,ula := s])}. By
the inductive hypothesis, this is equal to {(axRep(N), A) | N IFjq:=[s],]
¢a(A, @)} = [t]pja:=[s],] and also to {(axRep(N),A) | N |-, ¢a(A,Ta =
[s]5])} and thus to [t[a := [s],]],.

For formulas, the atomic cases follow by the proof above and the non-atomic
cases follow immediately by the application of the inductive hypothesis.

Lemma 23. If (M |-, ¢) then M |.

Proof. Straightforward from the definition of realizability — in every case the
definition starts with the clause assuring normalization of M.

Lemma 24. If M —* M’ then M’ |-, ¢ iff M -, 6.

Proof. Whether M I, ¢ or not depends only on the value of M, which does not
change with reduction or expansion.

Lemma 25. If p agrees with p' on FV(¢), then M |-, ¢ iff M |-, ¢. In par-
ticular, if a ¢ FV(¢), then M I, ¢ iff M IF 4.4 ¢-

Proof. Straightforward induction on the definition of realizability — the envi-
ronment is used only to provide the meaning of the free variables of terms in a
formula.

Lemma 26. If M I-, ¢ — ¢ and N |-, ¢, then M N I+ 1.

Proof. Suppose M I+, ¢ — 3. Then M | (Az. O) and for all P I+ ¢, Olx := P] I
. Now, M N —* (Ax. O) N — Olz := N]|. Lemma 24 gives us the claim.
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6.3 Properties of realizability

We now establish several properties of the realizability relation, which mostly
state that the truth in the realizability universe is not far from the truth in the
real world, as far as ranks of sets are concerned.

Several lemmas mirror similar facts from McCarty’s thesis [18]. We cannot,
however, simply point to these lemmas and say that essentially they prove the
same thing, as our realizability behaves a bit differently from his.

Lemma 27. If A € V), then there is 3 < a such that for all B, if M I, B €A,
then Be Vy. If M Ik, B= A, then Be V). If M I, B €1 A, then Ark(B) <
Ark(A).

Proof. By induction on «. Take any A € V). By the definition of V), there is
B < a such that A C \Z,,, x V3. Suppose M |-, B € A. Then M | inRep(N),
N | [u,0], O | {(O1,02) and there is C such that O; IF C €y Aand Oz IF B =C.
Therefore, O; | v and (v,C) € A. Thus C € Vg‘, so by the inductive hypothesis
also B € VB)‘ and we get the claim of the first part of the lemma.

For the second part, suppose M |-, B = A. This means that M | eqRep(M),
My | da. My and for allt € T, D, Mi[a :=t] | (O, P). Moreover, O | Az. O; and
for all N I-, D €; B we have O]z := N]IF, D € A. In particular, if (v, D) € B,
then O:[z := v] Ik, D € A. By the first part of the lemma, any such D is in V3
for some 3 < a, so B € V.

The third part is trivial.

Lemma 28. M I+, A = B iff M | eqRep(N) and N I+, Vd. (d €; A —
de B)AN(d €1 B — d € A). Also, M |-, A € B iff M | inRep(N) and
NlF,3c.ces BANA=c.

Proof. Simply expand what it means for M to realize respective formulas.

We now exhibit realizers corresponding to proofs of Lemmas 3-7. Their exis-
tence and corresponding properties will follow immediately from Theorem 2 once
it is proved; however, we need them for the proof of Lemma 39. Since Lemma
39 only needs to be used for a set theory with inaccessibles, an alternative to
tedious proofs below could be to prove normalization for the theory without
inaccessibles first, and take realizers from the respective normalization theorem.

Lemma 29. There is a term eqRefl such that eqRefl I, Va. a = a.

Proof. Take the term eqRefl = ind(M), where M = Ac. Az. eqRep(A\d. (N, N)
and N = )\y. inRep([d, (y,x d y)]). Then eqRefl — Xa. M a (Ae. Az. ind(M) e).
It suffices to show that for any A.t, M t (Xe. Az. ind(M) e) IF, A = A. We
proceed by induction on A-rank of A. We have M t (Xe. Az. ind(M) e) |
eqRep(Ad. (N, N)[z := Xe. Az. ind(M) e]). It suffices to show that for all s €
T,D € VA, forall O Ik, D €; A, inRep([s, (O, (Ne. Az. ind(M) e) s O)]) IF, D €
A. Take any s, D and O I, D €; A. By Lemma 27, Ark(D) < Ark(A). We need
to show the existence of C such that O I, C €; A and (Xe. Az.ind(M)e) s Ol-,

~—
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D = C. Taking C = D, the first part follows trivially. Since we have (Ae. A\z. ind(M) e¢) s O —*
ind(M) s — M s (Xe. Az. ind(M) s), we get the claim by Lemma 24 and the
inductive hypothesis.

Lemma 30. There is a term eqSymm such that eqSymm |-, Va,b. a =b — b =
a.

Proof. Let N = eqRep(Ad. (snd(eqProp(x) d), fst(eqProp(z) d))). Take eqSymm =
Aa,b. Ax. N. To show that eqSymm I, Va,b. a = b — b = q, it suffices to show
that for any A, B, t,u, M, if M IF, A= B then N[z := M]IF, B = A. Take any
A, B,t,u, M. The claim follows if for all s € T',C we can show:

— Thereis M; such that snd(eqProp(M) s) | Az. My and for all Ny I, C €1 B,
Ml[ﬂj = Nl] H_p C e A

— There is M» such that fst(eqProp(M) s) | Ax. M; and for all Ny IF, C €1 A,
IMQ[JZ = NQ] ”_p CeB.

Since M I, A = B, then there is O such that M | eqRep(O). We also have
fst(eqProp(M) s) —* fst(O s). Moreover, for some O;,02 we have O s |
<01,02>, where Oq ”—p Cer A— C e B and Oy ”_p Cer B— C e A
Therefore, fst(eqProp(M) s) —* Op and similarly snd(eqProp(M) s) —* Oa.
We also know that there are some P;, P> such that O; | Az. P, Oy | Azx. P,
Pl[ﬂj = NQ] ”_p C € B and PQ[JZ = Nl] ”‘p C e A Taklng M, = P and
M, = P, we get the claim by Lemma 24.

Lemma 31. There is a term eqTrans such that eqTrans |-, Vb,a,c. a =bAb =
c—a=c.

Proof. The proof and the realizers mirror closely the proof of Lemma 5. Set:

eqTrans = ind(My)
My = M\b,x1, a1, ¢, z2. eqRep(Af. (N, O))
N = A\z3. let [ag, z4] := inProp(fst(eqProp(fst(xs2)) f) x3) in Ny
N; = let [as, x5] := inProp(fst(eqProp(snd(z2)) az) fst(z4)) in No
Ny = inRep([as, (fst(xs), 21 a1 fst(z4) f as (snd(z4),snd(zs)))])
O = Az3. let [ag, 4] := inProp(snd(eqProp(snd(x2)) f) x3) in Oy
01 = let [ag, z5] := inProp(snd(eqProp(fst(xz2)) az) fst(x4)) in Os
Oy = inRep([as, (fst(xs), 21 a1 fst(z4) f as (snd(z4),snd(zs5)))]).

We will show that for all B, eqTrans | Ab. R for some term R such that for any
term ¢, R[b :=t] -, Ya,c. a = BA B = ¢ — a = ¢, which trivially implies the
claim. We proceed by induction on A-rank of B.

We have eqTrans — Ae. My e My, where M; = Ag. Ax. eqTrans g. Thus
it suffices to show that for all ¢, My ¢ty My Ik, Ya,c. a = BAB = ¢ —
a = c. Since My t1 My | Aa,c,za. eqRep(Af. (N,0)[x1 = Mj)), it suffices
to show that for all A,C, My such that Ms I, A = BAB = C we have
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eqRep(Af. (N, O)[z1,x2 := My, Ms]) F, A = C. By Lemma 28, it suffices to
show that for all F,u we have N[z1, 22, f := My, My, u] -, F €1 A— F e C
and O[xl,ﬂig,f = Ml,Mg,u] ”—p Fe, C—-Fe A.

For the proof of the first claim, we have N[z1,xq, f := My, Mo, u] | Azs. .. ..
Take any M3 |-, F' €; A. We need to show that:

let [ag, z4] := inProp(fst(eqProp(fst(Mz)) u) M)
in Nl[xl,xg,ﬂjg,f = Ml,Mz,Mg,u] H_p FecC.

We have fst(Mz) IF, A = B, so eqProp(fst(Mz)) Ik, Vf. (f €r A — f €
B)AN(f €r B— f €1 A), so by Lemma 26 fst(eqProp(fst(M2) u)) M3 I+, F € B.
Therefore, fst(eqProp(fst(Mz) u)) Ms | inRep(P) and P | [t2, M4] for some
P, Ay, to, My such that My Ik, Ay €7 BAF = As. Thus our term let [ag, z4] := ...
reduces to! Ni[z1, 22,24, az, f := My, Mo, My, ta, u).

Since snd(Ms) IF, B = C, we similarly have

fst(eqProp(snd(Ma)) o) fst(My) -, Az € C.

Thus fst(eqProp(snd(Ms)) t2) fst(My) | inRep(Q) and for some A3, @ | [ts, Ms],
Ms ”_p Az €7 C AN Ay = As. Therefore

N1 [ . ] l inRep([tg, <fSt(M5), M1 t1 fSt(M4) u t3 <SIld(M4), snd(M5)>>])
and by Lemma 24 it suffices to show that
inRep([ts, (fst(Ms), My ty fst(My) w t3 (snd(My),snd(Ms)))]) IF, F € C.

For this purpose, we need to show that fst(Ms) I+, As €; C, which is trivial,
and that

M1 tl fSt(M4) U t3 <snd(M4),snd(M5)> ”—p F = A3.
Since My = Ag. Az. eqTrans g, snd(My) Ik, F = Ay and snd(Ms) I, Ay = As,
all we need to have is that eqTrans t; I, Va,c. a = Ay A Ay = ¢ — a = c. Since
fst(Ma) Ik, Ay €5 B, Ark(As) < Ark(B) and we get the claim by the inductive
hypothesis.

The proof of the second claim proceeds in a very similar fashion. The only
thing which differs O and O; from N and N; is the exchange of fst and snd
which corresponds to using the information that Vf. f €; C — f € B and
Vf. f €r B— f € A and proceeding from C to A in the second part of the proof
of Lemma, 5.

Lemma 32. There is a term lei such that leil-, Va,b,c.a € cAha=b—beEc.
Proof. Take

lei = Aa, b, ¢, z. let [d,y] := inProp(fst(x)) in
inRep([d, {fst(y),eqTrans a b ¢ (eqSymm a b snd(z),snd(y)))]).

! Since x3 does not occur in Ny and No, we omit it from the substitution.
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We need to show that for any ¢1,t2,t3 € T, A, B,C, forany M |-, A € CANA = B,
we have
let [d,y] := inProp(fst(M)) in Q I, B € C, where

Q@ = inRep([d, (fst(y), eqTrans ¢; t2 t3 (eqSymm ¢ to snd(M),snd(y)))]).

We have M | (M, Ms), My I+, A € C, My IF, A = B. Therefore M; |
inRep(N), N | [u,0], O | (O1,02) and there is D such that O, I+, D €; C,
Os I, A = D. Therefore inProp(fst(M)) | [u, O], so it suffices to show that

inRep([u, (fst(0), eqTrans t1 t2 t3 (eqSymm t; ¢2 snd(M), (snd(0)))]) Ik, B € C.
This follows if we can find some E such that O, I, £ €; C' and
eqTrans ¢ to t3 (eqSymm ¢; t2 snd(M),snd(0)) Ik, B =E.

Take E to be D. Since we have eqSymm ¢; to snd(M) I+, B = A and snd(O) I,
A = E, the claim follows by Lemma, 31.

Lemma 33. There is a term ext such that ext I, Va,b,d. a = bAd € a — d € .
Proof. Take:
ext = Aa,b,d.\x. let [e,y] := inProp(snd(z)) in @, where

Q = lei e d b (fst(eqProp(fst(x)) e) fst(y),snd(y)).

Take any t1,t2,t3,A,B,D and M such that M |-, A = BAD € A. Then
inProp(snd(M)) | [ts, N] and for some E, N |-, E € ANE = D. Thus it
suffices to show that

lei ¢4 t3 to (fst(eqProp(fst(M)) ta) fst(N),snd(N)) IF, D € B.

Since fst(M) IF, A = B and fst(N) I, E €; A, fst(eqProp(fst(M)) e) fst(N)) IF,
E € B. By Lemma 32 and the fact that snd(N) I, E = D, we get the claim.

The following two lemmas will be used for the treatment of w in Lemma 42.
Lemma 34. If A, B € V), then [{A,B}], € V),

Proof. Take any (M,C) € [{A, B}],. By the definition of [{A, B}],, any such
Cisin V), so [{4,B}], € V.

Lemma 35. If A€ V) and M I+, B = S(A), then B € V\,,.

Proof. M I, B = S(A) means M I+, B = [J{A,{4, A}}. By Lemma 27,
it suffices to show that [U{4,{4,A}}], € V,},,. Applying Lemma 34 twice,
we find that [{4,{A, A}}], € V2, ,. By the definition of [U{A, {4, A}}],, if
(M, C) € [U{A,{A, A}}],, then C € V), ;, which shows the claim.

Lemma 36. If A, B€ V) and M I, C = (A, B), then C € V,,.
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Proof. Similar to the proof of Lemma 35, utilizing Lemmas 34 and 27.
Lemma 37. \rk(C) <rk(CT) 4+ w.

Proof. It (M, A) € C, then M IF, A €; C. We have inRep([a, (M, eqRefl a)]) IF,
A € C, so (inRep([a, (M, eqRefl a)]), A) € C*. The extra w is there to deal with
possible difficulties with finite C’s.

Lemma 38. If N |+, Vo € A. ¢ then for all (O,X) € A*, N | Xa. N; and
Ni | Az. Ny and Nofz := O] Ik, ¢[z := X]. Also, if N |-, 3x € A. ¢ then there
is (0,X) € A" such that N | [t, N1], N1 | (O, N3) and N, I+, ¢z := X].

Proof. If N IF, Yz € A. ¢ then N | Xa. Ny and for all ¢, X, Ni[a:=t]IF, X €
A — ¢. In particular, taking ¢t = a, we get N1 | Ax. Ny and for all O such that
OlF, X € A, N[z := O] Ik, ¢z := X]. This implies that for all X, for all O,
if OlF, X € A, then N | Aa. Ny, Ny | Az. Ny and Nofz := O] I, ¢lz := X],
which proves the first part of the claim.

If NI, 3z € A. ¢, then N | [t, N1] and there is X such that Ny | (O, Na),
Olr, X € Aand N; I, ¢[z := X], so thereis (O, X) € A" such that N | [t, Nq],
N1 l <O,N2> and NQ H_p ¢[$ = X]

With our lemmas in hand, we can now prove:

Lemma 39. Suppose A € U; and N I+,”C is a function from A into V;”. Then
CeVp.

Proof. First let us write formally the statement “C' is a function from A into V;”.
This means “for all z € A there is exactly one y € V; such that (z,y) € C and
for all z € C thereis x € A and y € V; such that z = (x,y)”. Thus N | (N1, Na),
NilF, Ve e AJly e Vi (z,y) € C and Na Ik, Vz € C3x € AJy € V;. 2 = (x,vy).
So Ny Ik, Vo € Ady € V;. (z,y) € C AVz. (z,2) € C — z = y. By Lemma 38,
for all (O, X) € A* there is (P,Y) € U;" such that ¢(O, X, P,Y) holds, where
#(0,X,P,Y) is defined as:

¢(O,X, P,Y) = (Nl 1 Aa. Nll) A\ (Nll | Ax. ng) A (ng[x = O] | [t7N13]) VAN

(N3 L (P, Q) AN (Q | (Q1,Q2)) A
(QilF, (X, Y)eC)A (Q21F, V2. (X,2) e C —z=Y).

Let ¢(0, X, P,Y) be defined as:
$(0, X, P,Y) =3Q1, Q2. (Q1 I, (X,Y) € C)NQa Ik, Vz. (X,2) € C — 2 =Y).

Obviously, if ¢(O, X, P,Y) then (O, X, P,Y). So for all (O, X) € AT there is
(P,Y) € U;" such that v(O, X, P,Y) holds.

Define a function F' which takes (O, X) € AT and returns the set {(P,Y) €
Ut | ¥(0,X,P,Y)}. Suppose (Pi,Y1),(P2,Ys) € F((O,X)). Then there are
Q117Q127Q21 such that Qll ”—p (X, Yl) S C, ng ”—p Vz. (X7Z) eC — z= Yl,
le H—p (X,Yé) e C. By Lemma 38, le J, Aa. Rl, Rl J, AL RQ and RQ[QJ =
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Q21] IF, Y2 = Y1. Since eqSymm a a Ra[x := Q21] IF, Y1 = Y3, by Lemma 27 the
A-ranks of Y7,Ys are the same and, since any such (P,Y) is a member of U,
they are smaller than I;. Also, for any (O, X) € AT, F(O, X) is inhabited.

Furthermore, define a function G from A" to I;, which takes (O, X) € A"
and returns J{ rk((P,Y)) | (P,Y) € F(O,X) A¥(0,X,P,Y)}. Then for any
(0,X) € AT, G(O, X) is an ordinal smaller than I; and if (P,Y) € U;" and
(0, X,P,Y), then (P,Y) € Vci*\(o,x)- Moreover, as [ is inaccessible, G € R(I3),
where R(I;) denotes the I';-th element of the standard cumulative hierarchy.
Therefore | Jran(G) is also an ordinal smaller than I';. We define an ordinal 3
to be max(\rk(A),ran(G)).

Now take any (M,B) € CT, so M |-, B € C. Then, by the definition of
N, and Lemma 38 there is (O, X) € A" and (01,Z) € U;" such that Ny |
Aa. N1, Noy | Ax. Nag, Noolx := M| | [t, Nas], Nag | (O, Nag), Nos | [t, Nos),
Nos | (O1,R) and R -, B = (X, Z). Let My = lei a a a (M, R), then M I,
(X,Z) € C. Take any element (P,Y) € F(O,X) and accompanying Q1, Q2.
Then Q2 | Aa. Q3, Qs | Ax. Q4 and Qulz := Mi] F, Z =Y. By Lemma 27,
Ark(Z) < Mrk(Y) and thus A\rk(Z) < 3. Since (0, X) € AT, \rk(X) < §3, too.
By Lemma 36, A\rk(B) < 3+ 2. By Lemma 37, 7k(B) < 8+ w, so rk((TC)) <
8+ w + 1. By Lemma 37 again, \rk(C) < 4 2w. Since § + 2w is still smaller
than I';, we get the claim.

Lemma 40. If M |-, Ac U;,, then M IF, Ac V.

Proof. If M I+, A € U, then M | inRep(N), N | [t,0], O | (O1,0) and
there is C such that O; | v, (v,C) € U; 4, Oz I, C = A. Then also (v,C) € Uj;,
so Oy lF, C e Vi,soalso M I-, A eV,

Lemma 41. If N Ik, ¢;(C,U, ~), where 1; is one of the five clauses defining
¢4 (C,U;.,) in the Definition 1, then N I+, 1;(C,V;).

Proof. There are five cases to consider:

— NI, C = V;_;. This case is trivial.

— Nlr, 3a. a € Uy Ac € a. Then there is A such that N | [t,0], O | (01, 02),
01k, A e U, O3 IF, C € A. By Lemma 40, O; IF, A € V;, so also
Nl,3a.acV;ANcea.

— N, 3a. a € Uy Ac = Ja. Then there is A such that N | [t,0], O |
(01,02), 011k, A€ U, OslF, C =|JA. Thus by Lemma40 O; I, A€ V;
and we get the claim in the same way as in the previous case.

— N, Ja. a € Uy, ANC = P(a). Similar to the previous case.

— NI, Ja. a € Ujy NC € a — Ui . Then there is A such that N | [t, O],
0 | (01,02), O1 I+, A€ U, Oz IF, “C is a function from A into U; ,”. By
Lemma 40, O I, A € V;. Expanding the second part, we have Oy | (Py, P»),
P, Ve e Ay e U . (z,y) e Cand P, IF,Vz€ C3x € ATy € U, . z =
(z,y). We will tackle P; and P, separately.

e For Py, we have for all X,¢, P, | Aa. P11, Pii]a:=1] | Az.Q and for all
R IF, X € A there is Y such that Q[z := R] | [t1,Qo], Qo | (Q1,Q2),
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N, YelU,,and Q2 Ik, (X,)Y) e CAVz. (X,2) e C — z=Y.By
Lemma 40 we also have Q1 I, Y € Vj, so also P Ik, Vo € adly. y €
ViA(z,y) € C.

e For P, we have for all Z,t, P, | Aa. P11, Piifa := t] | Az.Q and
for all R IF, Z € C there are X,Y such that Q[z := R] | [t1,Qol,
Qo | {Q1,Q2) and Q1 IF, X € A. Moreover, Q3 | [t2,So], So | (S1,52)
and S1 IF, Y € U; . By Lemma 40 we also have 51 IF, Y € V;, so also
P, V2eC —3Jre ATy e V. z = (2,y).

Therefore also Os I, “C is a function from A into V;” and in the end N Ik,
da.ace V,NC €a—V,.

Corollary 5. If M IF, ¢4 (C, U, ), then M I, ¢4 (C,V;).
The following lemma states the crucial property of the realizability relation.
Lemma 42. (M,C) € [ta(@)], iff M = axRep(N) and N Ik, ¢4 (C, [u],)-

Proof. The proof proceeds by case analysis on ¢4 (w). We first do the proof for
all terms apart from w and V;, then we show the claim for w and finally for V;.

For all terms, save w and V;, the left-to-right direction is immediate. For the
right-to-left direction, suppose N IF, ¢4(C, [u],) and M = axRep(N). To show
that (M,C) € [ta(w)],, we need to show that C' € V). Let @ = rank([u],).
Case t4(u) of:

— {u1,us}. Suppose that N I, C = [ui], V C = [uz],. Then either N |
inl(N1) ANy Ik, C = [u1], or N | inr(Ny) A Ny I, C = [uz],. By Lemma
27, in the former case C € Vof‘l, in the latter C € Vof‘z, so C € Vﬂiaw(ahaz).

— P(u). Suppose that N |-, Vd. d € C — d € [u],. Then N | Xa. Ny
and for any ¢, VD. Nifa :=t] IF, D € C — D € [u],, so VD,t. N1ja :=
t] | Az. Ny and for all O, if O IF D € C then Nyz := O] Ik, D € [u],.
Take any (v, B) € C. Then inRep([a, (v,eqRefl a)]) IF, B € C, so Najz :=
inRep([a, (v,eqRefl a)]] I, B € [u],. Thus by Lemma 27 any such B is in
V), s0C € Vo?\+1

— Ju. Suppose N Ik, Je. ¢ € [u], AC € c. Then N | [t, N1] and there is B
such that N; ”_p B e [[U]]p A C € B. Thus N; l <N1,N2>, Ny ”_p B e [[U]]p,
Ny IF, C € B. By Lemma 27, any such B is in V2, so also C € V.

— Sy 7)(u, ). Suppose N |-, C € [u], A ¢(C, [u],). Then N | (N1, N2) and
N1k, C € [u],. Thus C € V.

- Ry, 7 (u,w). Suppose

NIk, (Vz € [u],3y. ¢(z,y, [ul,)) A3z € [u],. =z, C,[u],).
Then N | (N1, N2) and Ny I, 32 € [u],. é(x,C,[u],). Thus Na | [t, Nag],
Nog l <Nil, N22> and there is B such that Noj ”_p B € [[UMHCI Noo ”_p
o(B,C,[u],).- We also have Ny IF, Vz € [u],3y. o(z,y,[u],), so N1 |
Xa. Nip and for all C, Nyy | Az. O and for all P I+, C € [u],, Olz =

P] Ik, Ay. ¢(C,y, [u],). So taking C' = B and P = Ny, there is D such
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that N1 J, Aa. Nll, N11 J, Ax. O and O[I = Ngl] ,L [8,01] and 01 H—p
#(B, D, [u],)A\Ve. $(B, e, [u],) — e = D. Therefore (N1, (No1, B)) € G from
the definition of 7, so there is D € Vj‘ such that N7 | Aa. N11, N11 | Az.O,
Ol := Nay] | [s,01] and Oy I, ¢(B, D, [u],) AVe. ¢(B,e,[u],) — e = D.
So O1 | (0O11,012) and Oq2 Ik, Ve. qS(B,e,m) — e = D. Therefore,
O12 | Aa. Q, Q | Ax. Q1 and Qu[z := Nao] IF, C = D. By Lemma 27,
CeV)

Now we tackle w. For the left-to-right direction, obviously M = infRep(N). For
the claim about N we proceed by induction on the definition of w’:

— The base case. Then N | inl(O) and O IF, A=0,s0 NIF, A=0V3dy €
w'. A= S(y).

— Inductive step. Then N | inr(Ny), Ny | [t,0], O | (M', P), (M’',B) € w'",
P Ik, A= S(B). Therefore, there is C' (namely B) such that M’ |-, C € &’
and P Ik, A= S(C). Thus [t,0] IF, Jy. y € &’ NA = S(y),so N I-, A =
O0VIyew. A= S(y).

For the right-to-left direction, suppose N |-, A =0V (3y. y € w' A A = S(y)).
Then either N | inl(NVqy) or N | inr(Ny). In the former case, Ni I-, A = 0,
so by Lemma 27 A € V. In the latter, Ny I, Jy. y € W' A A = S(y). Thus
N1 | [t,0] and there is B such that O I, B € w' AN A = S(B). So O | (M', P),
(M',B) € w'" and P Ik, A = S(B). This is exactly the inductive step of the
definition of w’, so it remains to show that A € V.. Since (M’, B) € w'*t, there
is a finite ordinal o such that B € V). By Lemma 35, A € V', ,, so also A € V}
and we get the claim.

Finally, we take care of V;. We first show the left-to-right direction. Sup-
pose (M, A) € U;, then M = inac;Rep(NN). We must have N I, ¢i(A,U; ) A
Vd. ¢%(d) — A € d for some ordinal 7. Then N | (N1, No), Ny Ik, ¢i(A,U; ),
Ny I, Vd. ¢4(d) — A € d. Corollary 5 gives us Ny IF, ¢%(A,V;), so N I,
1 (A, Vi) AVd. ¢i(d) — A € d, which is what we want.

For the right-to-left direction, suppose N I+, ¢i(C,V;) AVd. ¢5(d) — C € d.
We need to show that (inac;Rep(N), C) € U;. By the definition of U; it suffices
to show that C' € Vr,. We have N | (Nq, N2) and N; I, “C is equal to V;_; or
there is A € V; such that C is a powerset/union/member of A, or C is a function
from A into V;.”. The proof splits into corresponding five cases. The first four are
easy to prove using Lemma 27 and the definition of the ordinal v in the clause
5 in the definition of realizability. The last one follows by Lemma 39.

7 Normalization

In this section, environments p are finite partial functions mapping propositional
variables to A\Z,, and first-order variables to pairs (¢, A), wheret € T and A € V.
Therefore, p : Var U FVar — AZ, U (T x V?*), where Var denotes the set of
propositiional variables and F'Var denotes the set of first-order variables. For any
p, pr denotes the restriction of p to the mapping from first-order variables into
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terms: pr = Aa € FVar. m1(p(a)). Note that any p can be used as a realizability
environment by considering only the mapping of first-order variables to V.

Definition 12. For a sequent '+ ¢, p|= I'E M : ¢ means that p is defined on
FV(I',M,¢) and for all (z;,¢;) € I', p(x;) Ik, ¢;.

Note that if p = I' = M : ¢, then for any term ¢ in I, ¢, [t], is defined and
so is the realizability relation M I, ¢.

Definition 13. For a sequent I' - M : ¢, if p = I' = M : ¢ then M|[p]
is Mlz1 = p(x1),..,2n = p(xn),a1 = pr(a1),...,ar := pr(ar)], where
FV(M) ={z1,...,xn} and FVp(M) = {a1,...,ar}.

Lemma 43. Mz := N] = M|[p[zx := NJ]|. Also M[a :=t] = M[p[a := (¢, A)]].
Proof. Straightforward structural induction on M.

Theorem 2 (Normalization). If I' = M : ) then for all p = I' = M : 9,
MIp] IF, 9.

Proof. For any \Z,, term M, M’ in the proof denotes M/[p]. We proceed by
metalevel induction on I" - M : 9. Case I' = M : ¥ of:

x:9pFx:¢
Then M’ = p(z) and the claim follows.

I'M:¢p—¢ T'FN:¢

TFMN:9¢
By the inductive hypothseis, M’ I, ¢ — ¢ and N’ IF, ¢. Lemma 26 gives
the claim.
- Lz:dFM:y

I'tXx:¢. M:¢p—

We need to show that for any N I, ¢, M'[z := N] Ik, 1. Take any such
N. Let p/ = plx :== N]. Then p' =TIz : ¢ = M : 9, so by the inductive
hypothesis M[p'] I, 1. By Lemma 43 M[p'] = M[p][x :== N] = M'[z := N],
so M'[z := N| Ik, 1. Since p’ agrees with p on logic variables, by Lemma
25 we get M'[x := N] IF, 1.

I'-M:1
I' - magic(M) : ¢

By the inductive hypothesis, M’ I, L, which is not the case, so anything
holds, in particular magic(M’) I+, ¢.

I'FM:éAD

T+ fst(M) : ¢
By the inductive hypothesis, M’ -, ¢ A1), so M’ | (M, M) and M; I, ¢.
Therefore fst(M) —* fst((M1, Ma)) — M;. Lemma 24 gives the claim.
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'EM:¢pAY
I'snd(M) : 9

Symmetric to the previous case.

I'M:¢ I'FN:y
T'F(M,N): A

All we need to show is M’ I, ¢ and N’ I-, ¢, which we get from the
inductive hypothesis.

I'=M:¢
I'inl(M): oV

We need to show that M’ I, ¢, which we get from the inductive hypothesis.

I'=M:¢
I'tinr(M): ¢V

Symmetric to the previous case.

I'-M:¢ovey Hx:¢bEN:O FNe:yEO:9
I'tcase(M,z:¢. Nyx:1. 0): 9

By the inductive hypothesis, M’ I, ¢ V 9. Therefore either M’ | inl(M;)
and M; IF, ¢ or M’ | inr(Ms) and M, I+, 1. We only treat the former
case, the latter is symmetric. Since plz := Mi| -, Iz : ¢ = N : 9,
by the inductive hypothesis we get N[p[z := M;]] I, 9. We also have
case(M,z.N,r.0) —* case(inl(M;),2.N,2.0) — N[z := M;]. By Lemma

43, N|x := My] = N|p|z := M;]], so Lemma 24 gives us the claim.

I'~M:¢
TFa. M:Va ¢

By the inductive hypothesis, for all p = I' = M : ¢, M[p] I ¢. We need
to show that for all p = I" - Xa. M : Va. ¢, (Aa. M)[p] I, Ya. ¢. This is
equivalent to Aa. M[p] IF, Va. ¢. Take any such p. We need to show that
VA, t. Mplla := t] I, ¢la := A]. Take any A and t. Since pla = (t, A)] =
' M : ¢ and by Lemma 43 M|p]a := t] = M|[p[a := (¢, A)]], we get the
claim by the inductive hypothesis.

' M:Va ¢
I'tMt: ¢la:=t

By the inductive hypothesis, M’ I, Ya. ¢, so M’ | Aa. N and VA, u.N[a :=
u] IF, ¢la := A]. In particular N|a := t[p]] IF, ¢la := [t],]. By Lemma 22,
Nla = t[p]] Ik, ¢a := t]. Since M’ (t[p]) —* (Aa. N) t[p] — Nla := t[p]],
Lemma 24 gives us the claim.
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't M: ¢la:=1]
TE[LM]: 3a 6

By the inductive hypothesis, M’ I, ¢la := t], so by Lemma 22, M’ IF,
¢la := [t],]. Thus, there is a lambda-name A, namely [t],, such that M’ I,
¢la = A]. Thus, [t, M][p] = [t[p], M'] I, Ja.¢ which is what we want.

I'M:3a.¢ Lx:pFN:¥
I'kFlet [a,z:¢]:=Min N : ¢

a ¢ FV(I,9)

Let pl=I'"Flet [a,2: ¢] :== M in N : 1. We need to show:

let [a,x : ¢] := M in N[p] =let [a, 2] := M’ in N[p] Ik, 1.

By the inductive hypothesis, M" -, Ja. ¢, so M’ | [t, M;] and for some A,
M, I+, ¢la := A]. By the inductive hypothesis again, for any p’ = I,z :
¢+ N : ¢ we have N[p'] IF, . Take p’ = plz := My,a := (t, A)]. Since
a ¢ FV(¢), by Lemma 25 N[p'] I, ©. Now, let [a, : ¢] := M’ in N[p] —*
let [a,2] := [t, Mi] in N[p] — N[p][a := t][z := M;i] = N[p]. Lemma 24
gives us the claim.

I'-M:Vd. (dejt—deu)AN(deru—det)
I'+eqRep(t,u, M) :t=u

By the inductive hypothesis, M’ -, Vd. (d€;t —d € u)A(d €r v — d € t).
By Lemma 22, M’ I, Vd. (d €1 [t], — d € [u],) A (d €1 [u], — d € [t],).
By Lemma 28, eqRep(M’) IF, [t], = [u],. Lemma 22 applied again gives us
the claim.

I'-M:t=u
I' - eqProp(t,u, M) :Vd. (dejt—-deu)AN(d€Eju—det)

By the inductive hypothesis, M’ I, t = u. By Lemma 22, M’ I, [t], =
[u],- By Lemma 28, M’ | eqRep(N) and N I, Vd. (d €1 [t], — d €
[ulp) A (d €1 [u], — d € [t],). Since eqProp(t,u, M) = eqProp(M’') —*
eqProp(eqRep(N)) — N, by Lemma 24 eqProp(t, u, M) IF, Vd. (d €1 [t], —
deu],) AN(deru], — d € [t],). Lemma 22 applied once again gives us
the claim.

For inProp and inRep, the proof is similar to the two previous cases.

- M:éa(t,0)
I' - axRep(t,u, M) : t €1 ta(q)

By the inductive hypothesis, M’ I, ¢4 (¢, @). By Lemma 22 this is equivalent
to M’ Ik, ¢a([t],, [u],). By Lemma 42 (axRep(M’),[t],) € [ta(@)],, so
axRep(M") IFoter ta(T).
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I M:terta(a)
I' - axProp(t,w, M) : ¢pa(t,u)
By the inductive hypothesis, M’ Ik, t €; t4(@). This means that M’ | v and
(v,[t],) € [ta(@)],- By Lemma 42, v = axRep(N) and N IF, ¢4 ([t],, [ul,)-
By Lemma 22, N Ik, ¢ 4(t,@). Moreover, axProp(t, u, M) = axProp(M') —*
axProp(axRep(N)) — N. Lemma 24 gives us the claim.

I'M:Ve. (Vb.berc— ¢(b,1) — ¢(c,t)
I'Findgyz) (M, t) : Ya. ¢(a,t)

We need to show that ind(M’) I, Va. ¢(a,t). Since ind(M’) reduces to
Ae. M ¢ (Ab. Az. ind(M') b), by Lemma 24 it suffices to show that for all
C,t, M"t (Ab. Az. ind(M') b) I, ¢(C,t). We proceed by induction on \-rank
of C. Take any C,t. By the inductive hypothesis, M’ I, Vc. (Vb. b €7 ¢ —
#(b, 1)) = (e, ), so M’ | Ae. N and Nlc:=1] Ik, ¥b. b €; C — ¢(b,%). By
Lemma 26, it suffices to show that Ab. Az. ind(M’) bl-, Vb. b €5 C — ¢(b, ).
Take any B,u, O Ik, B €; C, we need to show that ind(M')[z := O] u Ik,
#(B,t). As x ¢ FV(M’), it suffices to show that ind(M’) u I, ¢(B,1),
which, by Lemma 24, is equivalent to M’ u (Ab. Az. ind(M’) b) I+, (B, ).
As O Ik, B €1 C, the A-rank of B is less than the A-rank of C and we get
the claim by the inductive hypothesis.

Corollary 6 (Normalization). If - M : ¢, then M |.

Proof. Take p mapping all free propositional variables of M to themselves and all
free first-order variables a of M to (a, ). Then p = M : ¢. By Theorem 2, M p]
normalizes. By the definition of p, M[p] = M. By Lemma 20, M normalizes.

As the reduction system is deterministic, the distinction between strong and
weak normalization does not exist. If the reduction system is extended to allow
reductions anywhere inside the term, the Corollary 6 shows only weak normal-
ization. The counterexamples from [8] adapted to AZ, show that IZFg, does
not strongly normalize and that non-well-founded version does not normalize at
all.

The normalization theorem immediately provides the standard properties of
constructive set theories — the disjunction property, the term existence property,
the set existence property and the numerical existence property. Proofs are the
same as in [8]; we show one of them as an example:

Corollary 7 (Term Existence Property). If IZFg,t 3x. ¢(z), then there is
a term t such that IZFp, - ¢(t).

Proof. By the Curry-Howard isomorphism, there is a AZ,-term M such that
F M : dx. ¢. By Corollary 3, M | v and + v : Jz. ¢. By Canonical Forms,
there is a pair [t, N] such that = N : ¢(t). Therefore, by the Curry-Howard
isomorphism, IZF g, ¢(t).
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In [11] we have shown how to use these properties for the purpose of program
extraction. Thus our results establish IZF,, as a valid basis for a prover based
on set theory with inaccessibles with the capability of program extraction from
constructive proofs.

8 Related work

Several normalization results for impredicative constructive set theories much
weaker than IZF exist. Bailin [20] proved strong normalization of a constructive
set theory without the induction and replacement axioms. Miquel [21] interpreted
a theory of similar strength in lambda-calculus with types based on Fw.2. He also
showed strong normalization of the calculus. This result was later extended —
Dowek and Miquel [22] interpreted a version of constructive Zermelo set theory
in a strongly normalizing deduction-modulo system.

Krivine [23] defined realizability using lambda calculus for classical set theory
conservative over ZF. The types for the calculus were defined. However, it seems
that the types correspond more to the truth in the realizability model than to
provable statements in the theory. Moreover, the calculus does not even weakly
normalize.

The standard metamathematical properties of theories related to IZF are
well investigated. Myhill [24] showed DP, NEP, SEP and TEP for IZF with
Replacement and non-recursive list of set terms. Friedman and Sc¢edrov [25]
showed SEP and TEP for an extension of that theory with countable choice
axioms. Recently DP and NEP have been shown for IZF with Collection extended
with various choice principles by Rathjen [26]. However, the technique does not
seem to be strong enough to provide TEP and SEP.

Powerful large set axioms (including the existence of class-many inaccessibles)
were added to IZF with Collection by Friedman and Seedrov [13]. The notion
of an inaccessible set they use differs from ours, as their inaccessibles must also
model the Collection axiom. We do not know if these two notions coincide. Both
DP and NEP was shown for the resulting theories, but we do not think that
SEP and TEP could be proved with their technique.

Inaccessible sets were also investigated in the context of weaker, predicative
CZF (Constructive Zermelo-Fraenkel). Crosilla and Rathjen [27] showed that
the power of inaccessible set axioms might be closely linked to the €-induction
axiom. They proved that inaccessible sets added to CZF with €-induction taken
away do not add any proof-theoretical power.
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